Senecavirus A (SVA) is an RNA virus in the family Picornaviridae that has been detected in swine-production systems and is associated with vesicular disease and neonate mortality. The viral capsid is composed of four structural proteins: VP1–VP4. Although the VP1 protein has been reported to be the most immunogenic protein in vivo, no information on the immunodominant regions of the SVA polyprotein is available. The objective of this study was to identify the immunodominant regions of SVA polyprotein using an enzyme-linked immunosorbent assay (ELISA) epitope-mapping approach. The binding effect of SVA polyclonal antibody (SVA-pAb), SVA-VP1 monoclonal antibodies (SVA-mAb), and SVA-positive sera from clinically affected animals were characterized using a set of 18 overlapping SVA VP1-derived peptides by indirect and blocking ELISAs. All VP1 peptides yielded significant signal against SVA-pAb and SVA-VP1-mAb upon indirect ELISA. One peptide (aa 1–20) showed significantly high optical density on SVA recombinant VP1 protein (rVP1) and whole-virus-based indirect ELISAs. The blocking ELISA results demonstrated that peptides spanning aa 165–185 and 225–245 had a 50 % or greater inhibitory effect on SVA-pAb, while six groups of overlapping peptides spanning aa 1–35, 45–80, 90–140, 150–170, 195–230, and 240–264 and two groups of overlapping peptides spanning aa 1–50 and 60–264 showed a 50 % inhibitory effect or greater on swine VP1-mAb and SVA-seropositive swine serum, respectively, against SVA rVP1. Three-dimensional protein homology modeling showed that the peptides binding SVA-pAb are located on the outer surface of the viral capsid, while SVA mAbs and swine-positive sere can bind to epitopes located in both the inner and outer surfaces of the capsid. These linear epitopes showed differential binding and inhibitory activity on mAb and pAb; however, further studies will be necessary to evaluate whether they can act as decoy or neutralizing epitopes. Because mAb antibodies demonstrated a high binding affinity for this set of peptides, this information could lay the foundation for generating and screening specific antibodies for therapeutic potential.
Read full abstract