Physics-informed neural network has emerged as a promising approach for solving partial differential equations. However, it is still a challenge for the computation of structural mechanics problems since it involves solving higher-order partial differential equations as the governing equations are fourth-order nonlinear equations. Here we develop a multi-level physics-informed neural network framework where an aggregation model is developed by combining multiple neural networks, with each one involving only first-order or second-order partial differential equations representing different physics information such as geometrical, constitutive, and equilibrium relations of the structure. The proposed framework demonstrates a remarkable advancement over the classical neural networks in terms of the accuracy and computation time. The proposed method holds the potential to become a promising paradigm for structural mechanics computation and facilitate the intelligent computation of digital twin systems.