High coastal nutrient loading can cause changes in seagrass chemistry traits that may lead to variability in seagrass litter decomposition processes. Such changes in decomposition have the potential to alter the carbon (C) sequestration capacity within seagrass meadows (‘blue carbon’). However, the external and internal factors that drive the variability in decomposition rates of the different organic matter (OM) types of seagrass are poorly understood, especially recalcitrant OM (i.e. cellulose-associated OM and lignin-associated OM), thereby limiting our ability to evaluate the C sequestration potential. It was conducted a laboratory incubation to compare differences in the decomposition of Halophila beccarii litter collected from seagrass meadows with contrasting nutrient loading histories. The exponential decay constants of seagrass litter mass, cellulose-associated OM and lignin-associated OM were 0.009–0.032, 0.014–0.054 and 0.009–0.033 d−1, respectively. The seagrass litter collected from meadows with high nutrient loading exhibited greater losses of mass (25.0–41.2 %), cellulose-associated OM (2.8–18.5 %) and lignin-associated OM (9.6–31.2 %) than litter from relatively low nutrient loading meadows. The initial and temporal changes of the litter nitrogen (N) and phosphorus (P) concentrations, stoichiometric ratios of lignin/N, C/N, and C/P, and cellulose-associated OM content, were strongly correlated with the losses of litter mass and different types of OM. Further, temporal changes of litter C and OM types, particularly the OM and labile OM concentrations, were identified as the main driving factors for the loss of litter mass and loss of different OM types. These results indicated that nutrient-loaded seagrass litter, characterized by elevated nutrient levels and diminished amounts of recalcitrant OM, exhibits an accelerated decay rate for the recalcitrant OM. These differences in litter quality would lead to a reduced contribution of seagrass litter to long-term C stocks in eutrophic meadows, thereby weakening the stability of C sequestration. Considering the expected changes in seagrass litter chemistry traits and decay rates due to long-term nutrient loading, this study provides useful information for improving C sequestration capabilities through effective pollution management.
Read full abstract