This paper deals with astrophysical accretion onto the quantum-improved charged black hole. An accretion process does not depend on time; it is a stationary process. In this analysis, we explore the physical quantities like energy density, radial velocity, sonic speed, and accretion mass rate for quantum-improved charged black holes and compare them with the existing outcomes corresponding to the Schwarzschild black hole. Following the Michel and Babichev approaches, we investigate the quantities mentioned above by taking into account different equations of state. These fundamental approaches and black hole parameters are responsible for decreasing the fluid's radial infalling velocity during the accretion process and, for others, as a gravitational enhancer, increasing the fluid flow into the black hole horizon. The polytropic fluid's accretion process is also discussed. All the quantities are analyzed graphically with a contour structure. It is observed that the maximum accretion rate is achieved for different values of the considered black hole parameters. From this analysis, we may be able to understand the physical mechanism of accretion onto a quantum-improved charged black hole.
Read full abstract