This study provides a comprehensive analysis of the eco-physiological responses of the blue crab (Callinectes sapidus) to variations in salinity, shedding light on its adaptability and invasive success in aquatic environments. Gender-specific differences in osmoregulation and Electron Transport System (ETS) activity highlight the importance of considering sex-specific aspects when understanding the physiological responses of invasive species. Females exhibited increased ETS activity at lower salinities, potentially indicative of metabolic stress, while males displayed constant ETS activity across a range of salinities. Osmoregulatory capacity which depended on gender and salinity, was efficient within meso-polyhaline waters but decreased at higher salinities, particularly in males. These findings provide valuable understandings into how C. sapidus specimens in an invaded area responds to salinity changes, important for considerate its distribution through saline pathways during tidal cycle fluctuations. This study shows the importance of interdisciplinary research for effective management of invasive species and conservation of affected aquatic ecosystems.
Read full abstract