ABSTRACT Aims To investigate the association between gastrointestinal parasites (GIP) and animal behaviour in dairy calves under New Zealand pastoral conditions, using animal-mounted, accelerometer-based sensors. Methods Thirty-six, 5–6-month-old, Friesian-Jersey, heifer calves fitted with animal activity sensors to track behaviour were randomly allocated to one of two treatment groups. Half the animals were challenged with an oral dose of 20,000 larvae of Ostertagia ostertagi and Cooperia oncophera once a week for 3 weeks and half were unchallenged. Five weeks after the last dose, seven infected and nine uninfected animals were treated with an oral anthelmintic (AHC) and data collected for a further week. Accelerometer data were classified into minutes per day eating, ruminating, in moderate–high activity or in low activity. Live weight and faecal egg counts (FEC) were recorded weekly over the study period. All animals co-grazed a newly sown pasture not previously grazed by ruminants and were moved every week to fresh grazing. Treatment status was blinded to those managing the animals which were otherwise treated identically. Results Complete behavioural records were available from 30/36 calves, (13 challenged and 17 unchallenged). Before treatment with AHC, FEC increased in infected and un-treated calves over the study, while uninfected animals maintained a near zero FEC. There was no difference in live weight gain between the two groups over the study period. Bayesian, multinomial regression predicted differences in animal behaviour between infected and uninfected animals that were not treated with AHC over the 7 weeks following initial infection. Parasitised calves not treated with AHC were less active and spent up to 6 (95% highest density interval (HDI) = 1–11) minutes/day less in low level activity and up to 15 (95% HDI = 7–20) minutes/day less in moderate to high level activity. They ruminated up to 9 (95% HDI = 2–15) minutes/day more and ate up to 10 (95% HDI = 2–19) minutes/day more than control calves that were not treated with AHC. The effect of AHC on time spent in each behaviour differed between infected and uninfected calves and increased the coefficient of dispersion of the behavioural data. Conclusions and clinical relevance Small differences in animal behaviour can be measured in calves with GIP. However, to use this to target treatment, further validation studies are required to confirm the accuracy of behavioural classification and understand the complex drivers of animal behaviour in a dynamic and variable pasture-parasite–host environment.