Mercury (Hg) is a global pollutant, which particularly affects aquatic ecosystems, both marine and freshwater. Top-predators depending on these environments, such as seabirds, are regarded as suitable bioindicators of Hg pollution. In the Ebro Delta (NE Iberian Peninsula), legacy Hg pollution from a chlor-alkali industry operating in Flix and located ca. 100 km upstream of the Ebro River mouth has been impacting the delta environment and the neighboring coastal area. Furthermore, levels of Hg in the biota of the Mediterranean Sea are known to be high compared to other marine areas. In this work we used a Hg stable isotopes approach in feathers to understand the processes leading to different Hg concentrations in three Laridae species breeding in sympatry in the area (Audouin's gull Ichthyaetus audouinii, black-headed gull Chroicocephalus ridibundus, common tern Sterna hirundo). These species have distinct trophic ecologies, exhibiting a differential use of marine resources and freshwater resources (i.e., rice paddies prey). Moreover, for Audouin's gull, in which in the Ebro Delta colony temporal differences in Hg levels were documented previously, we used Hg stable isotopes to understand the impact of anthropogenic activities on Hg levels in the colony over time. Hg stable isotopes differentiated the three Laridae species according to their trophic ecologies. Furthermore, for Audouin's gull we observed temporal variations in Hg isotopic signatures possibly owing to anthropogenic-derived pollution in the Ebro Delta. To the best of our knowledge this is the first time Hg stable isotopes have been reported in seabirds from the NW Mediterranean.
Read full abstract