The caridoid or "tail flip" escape behavior of decapod crustaceans is a model system in neurobiology, but many aspects of its biomechanics are not well understood. To understand how the freshwater virile crayfish Faxonius virilis interacts with the substrate during the tail flip, we studied tail-flip hydrodynamics and force generation for free-moving animals standing on substrate, as well as tethered animals held at different distances from the substrate. We found no significant differences in force generation when distance from substrate was varied. Particle image velocimetry revealed that vortex formation was similar at all distances, but there were notable differences in interactions between shed vortices and substrate at different distances. Negative vorticity (clockwise flow of water) was observed in tethered animals interacting with the substrate but was largely absent in free-swimming animals. We found no evidence of ground effects enhancing tail flip performance in either tethered or free-swimming individuals, as peak force generation occurred before vortex shedding. This study contributes to our understanding of the crayfish escape response and highlights the need for more work that incorporates free-swimming animals and complex environments in the study of crustacean biomechanics.
Read full abstract