A continuous production experiment was conducted in Norway with 48 Norwegian Red dairy cows in early- to mid-lactation, to investigate the effect of grass silage with lactic acid bacteria (LAB) or formic acid (FA) additives, on milk yield (MY) and milk protein yield (MPY). Grass wilted to 250 g dry matter (DM)/kg was inoculated with homofermentative LAB to obtain LAB silage, whilst FA silage was produced adding a FA-based additive. The two silages were fed ad libitum and supplemented with an average 10.3 kg of either high (H) or low (L) metabolizable protein (MP) concentrates, in a 2 ✗ 2 factorial arrangement of treatments. The treatments were LAB silage and L concentrate, LAB silage and H concentrate, FA silage and L concentrate and FA silage and H concentrate. The use of FA resulted in lower levels of residual water-soluble carbohydrates (WSC), and higher levels of ammonia nitrogen (NH3N), compared to LAB. In situ results for FA silage showed lower rumen degradability of crude protein (CP), while gas in vitro results showed lower utilizable CP (uCP), compared to LAB silage (782 vs. 750 g/kg DM and 128 vs. 119 g/kg DM, respectively). The purine over creatinine (PDC) index did not indicate any effects on the microbial protein synthesis (MPS) from any of the treatments. The higher daily intake of FA silage (12.5 vs.13.7 kg DM for LAB and FA, respectively, P < 0.001), did not result in significant differences in daily MY (31.0 vs. 30.2 kg, P = 0.208), nor MPY (1.08 vs.1.07 kg/day, P = 0.878) for LAB and FA, respectively. Feeding H concentrate gave higher MPY (P = 0.036), higher urea in milk (P < 0.001), plasma (P < 0.001) and urine (P = 0.008) and tended to give higher MY (P = 0.063) for both silages. For amino acids (AA) in plasma, alanine was higher for FA silage than for LAB silage (P = 0.030), while histidine (P = 0.001), leucine (P = 0.015) and glutamine (P = 0.007) were higher for both silages when cows were fed H concentrate. In conclusion, the FA and LAB additives did not affect MY or MPY any differently. Feeding H concentrate resulted in higher MPY for both silages, but reduced nitrogen (N) efficiency.
Read full abstract