Reduction of the 7-formyl groups in chlorophyll (Chl) b and its demetalated compound pheophytin (Phe) b was kinetically analyzed by using tert-butylamine–borane complex ( t-BuNH 2·BH 3), and was compared with that of the 3-formyl groups in Chl d and Phe d. Reduction kinetics of the 7-formyl group in Chl b was similar to that in Phe b in dichloromethane containing 5 mM t-BuNH 2·BH 3. Little difference of the reduction kinetics of the 7-formyl groups between Chl b and Phe b was in sharp contrast to the reduction kinetics of the 3-formyl groups in Chl d and Phe d: the 3-formyl group in Phe d was reduced 5.3-fold faster than that in Chl d. The 7-formyl groups in Chl b and Phe b were reduced more slowly than the 3-formyl groups in Chl d and Phe d, respectively. The difference of the reactivity between the 3- and 7-formyl groups was in line with 13C NMR measurements of chlorophyllous pigments, in which the chemical shifts of carbon atoms in the 7-formyl groups of Chl b and Phe b were high-field shifted compared with those in the 3-formyl groups of Chl d and Phe d, respectively. These indicate that the 7-formyl groups in chlorophyllous pigments were less reactive for reduction to the corresponding hydroxymethyl groups than the 3-formyl groups due to the difference in electronic states of the formyl groups in the A- and B-rings of the chlorin macrocycle.