In this paper, we study the fractional critical Schrödinger–Poisson system (-Δ)su+λϕu=αu+μ|u|q-2u+|u|2s∗-2u,inR3,(-Δ)tϕ=u2,inR3,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned}{\\left\\{ \\begin{array}{ll} (-\\Delta )^su +\\lambda \\phi u= \\alpha u+\\mu |u|^{q-2}u+|u|^{2^*_s-2}u,&{}~~ \\hbox {in}~{\\mathbb {R}}^3,\\\\ (-\\Delta )^t\\phi =u^2,&{}~~ \\hbox {in}~{\\mathbb {R}}^3,\\end{array}\\right. } \\end{aligned}$$\\end{document}having prescribed mass ∫R3|u|2dx=a2,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\int _{{\\mathbb {R}}^3} |u|^2dx=a^2,\\end{aligned}$$\\end{document}where s,t∈(0,1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ s, t \\in (0, 1)$$\\end{document} satisfy 2s+2t>3,q∈(2,2s∗),a>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2\\,s+2t> 3, q\\in (2,2^*_s), a>0$$\\end{document} and λ,μ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda ,\\mu >0$$\\end{document} parameters and α∈R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha \\in {\\mathbb {R}}$$\\end{document} is an undetermined parameter. For this problem, under the L2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2$$\\end{document}-subcritical perturbation μ|u|q-2u,q∈(2,2+4s3)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu |u|^{q-2}u, q\\in (2,2+\\frac{4\\,s}{3})$$\\end{document}, we derive the existence of multiple normalized solutions by means of the truncation technique, concentration-compactness principle and the genus theory. In the L2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2$$\\end{document}-supercritical perturbation μ|u|q-2u,q∈(2+4s3,2s∗)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu |u|^{q-2}u,q\\in (2+\\frac{4\\,s}{3}, 2^*_s)$$\\end{document}, we prove two different results of normalized solutions when parameters λ,μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda ,\\mu $$\\end{document} satisfy different assumptions, by applying the constrained variational methods and the mountain pass theorem. Our results extend and improve some previous ones of Zhang et al. (Adv Nonlinear Stud 16:15–30, 2016); and of Teng (J Differ Equ 261:3061–3106, 2016), since we are concerned with normalized solutions.