Resource pulses are ecologically important phenomenon that occur in most ecosystems globally. Following optimal foraging theory, many consumers switch to pulsatile foods when available, examples of which include fruit mast and vulnerable young prey. Yet how the availability of resource pulses shapes the ecology of predators is still an emerging area of research; and how much individual variation there is in response to pulses is not well understood. We hypothesized that resource pulses would lead to dietary convergence in our population, which we tested by tracking both population-level and individual coyote diets for 3 years in South Carolina, USA. We (1) described seasonal dietary shifts in relation to resource pulses; (2) compared male and female diets across seasons; and (3) tested this dietary convergence hypothesis by quantifying individual dietary variation both across and within periods when resource pulses were available. We found that pulses of white-tailed deer fawns and blackberries composed over half of coyote diet in summer, and persimmon fruits were an important component in fall. Male and female coyotes generally had similar diets, but males consumed more deer in fall, perhaps driven by scavenging more. We found support for our dietary convergence hypothesis, where individuals had more similar diets during resource pulses compared to a non-pulse period. We also found that this convergence happened before peak availability, suggesting a non-symmetric response to pulse availability. We show that nearly all coyotes eat fawns, suggesting that targeted efforts to remove "fawn killers" would be in vain. Instead, given how quickly coyotes collectively converge on resource pulses, our findings show that resource pulses could potentially be used by managers to alter the behavior of apex predators. More broadly, we open a new line of inquiry into how variation in individual foraging decisions scales up to shape the effects of resource pulses on ecological communities.
Read full abstract