Intrauterine adhesions (IUA) are the most common cause of uterine infertility, and conventional treatments have not consistently achieved satisfactory pregnancy rates. Stem cell therapy shows promising potential for the clinical treatment of IUA. Although various advanced biomaterials have been designed for delivering stem cells to the uterine cavity, there remain significant challenges, particularly in devising therapeutic strategies for clinical application that minimize surgical incisions and conform to the intricate structure of uterine cavity. Herein, an injectable hydrogel loaded with human umbilical cord-derived mesenchymal stem cells (UCMSCs) was synthesized via the Diels-Alder click reaction for endometrial regeneration and fertility restoration, exhibiting suitable mechanical properties, good biocompatibility, and desirable degradation properties. Notably, this hydrogel permitted minimally invasive administration and integrated seamlessly with surrounding tissue. Our study revealed that the UCMSCs-laden injectable hydrogel enhanced cell proliferation, migration, angiogenesis, and exhibited anti-fibrotic effects in vitro. The implantation of this hydrogel significantly facilitated endometrium regeneration and restored fertility in a rat endometrial damage model. Mechanistically, in vivo results indicated that the UCMSCs-laden injectable hydrogel effectively promoted macrophage recruitment and facilitated M2 phenotype polarization. Collectively, this hydrogel demonstrated efficacy in regenerating damaged endometrium, leading to the restoration of fertility. Consequently, it holds promise as a potential therapeutic strategy for endometrial damage and fertility decline arising from intrauterine adhesions. Statement of significanceSevere endometrial traumas frequently lead to intrauterine adhesions and subsequent infertility. Stem cell therapy shows promising potential for the clinical treatment of IUA; however, challenges remain, including low delivery efficiency and compromised stem cell activity during the delivery process. In this study, we fabricated an injectable hydrogel loaded with UCMSCs via the Diels-Alder click reaction, which exhibited unique bioorthogonality. The in situ-gelling hydrogels could be introduced through a minimally invasive procedure and adapt to the intricate anatomy of the uterus. The UCMSCs-laden injectable hydrogel promoted endometrial regeneration and fertility restoration in a rat endometrial damage model, efficaciously augmenting macrophage recruitment and promoting their polarization to the M2 phenotype. The administration of UCMSCs-laden injectable hydrogel presents a promising therapeutic strategy for patients with severe intrauterine adhesion.
Read full abstract