We present a novel technique for continuous label-free separation of particles based on their dielectrophoretic crossover frequencies. Our technique relies on our unique microfluidic geometry which performs hydrodynamic focusing, generates a stagnation flow with two outlets, and simultaneously produces an isomotive dielectrophoretic field via wall-situated electrodes. To perform particle separation, we hydrodynamically focus particles onto stagnation streamlines and use isomotive dielectrophoretic force to nudge the particles off these streamlines and direct them into appropriate outlets. Focusing particles onto stagnation streamlines obviates the need for large forces to be applied to the particles and therefore increases system throughput. The use of isomotive (spatially uniform) dielectrophoretic force increases system reliability. To guide designers, we develop and describe a simple scaling model for the particle separation dynamics of our technique. The model predicts the range of particle sizes that can be separated as well as the processing rate that can be achieved as a function of system design parameters: channel size, flow rate, and applied potential. Finally, as a proof-of-principle, we use this technique to separate polystyrene bead and cell mixtures of the same diameters as well as mixtures of both particles with varying diameters.