Respiratory motion management is essential in order to achieve high-precision radiotherapy. Markerless motion tracking of tumor can provide a non-invasive way to manage respiratory motion, thereby enhancing treatment accuracy. However, the low contrast in real-time x-ray images for image guidance limits the application of markerless tracking. We present a novel approach based on a motion model to perform markerless tracking of tumor and surrounding tissues even when they have low contrast in real-time x-ray images. A proof-of-concept validation of the method has been performed using digital and physical phantoms at breathing conditions that are significantly different than the planning stage. A motion model is first constructed by performing principal component analysis (PCA) on the planning 4DCT. During treatment, the motion of a surrogate is tracked and used as the input of the motion model, which generates a 3D real-time volume estimation. Such 3D estimation is then projected to 2D to create digitally reconstructed radiographs (DRRs). The relationships between the real-time DRRs, reference DRRs, and reference x-ray images are first established to simulate 2D real-time images from the real-time volume. The registration between the simulated 2D real-time images and real-time x-ray images corrects the initial motion model estimation to ensure the estimated volume matches the real-time condition. In digital phantom, the Dice index of pancreas was improved from 0.74 to 0.78 after correction using real-time DRRs in fully inhaled phase. Validation on lung and pancreas is performed in physical phantom with two motion traces. The surrogate-tumor relationships were intentionally altered to generate large target localization errors due to the differences in body condition between treatment planning stage and during treatment. The real-time correction for the estimated 3D real-time volume was performed using a pair of 2D x-ray images. For the deep breathing motion trace, the tumor localization mean absolute error (MAE) throughout the tracking decreases from around 3mm to less than 1mm after correction. For the shallow breathing motion trace with a 1.7mm baseline shift, the tumor localization MAE throughout the tracking decreases from around 1.5mm to less than 1mm after correction. The method combines the detailed structural information from planning 4DCT and real-time information from real-time x-ray images through a motion model. The matching between the real-time model estimation and 2D real-time images is performed in the same modality so that it can be applied to regions with low contrast in the images. The real-time images successfully corrected the initial motion model estimations in our proof-of-concept validation. This suggests the potential to perform markerless tracking in low-contrast region using a motion model.
Read full abstract