We report a new one-pot low-viscosity synthetic route to high molecular weight non-ionic water-soluble polymers based on polymerization-induced self-assembly (PISA). The RAFT aqueous dispersion polymerization of N-acryloylmorpholine (NAM) is conducted at 30 °C using a suitable redox initiator and a poly(2-hydroxyethyl acrylamide) (PHEAC) precursor in the presence of 0.60 M ammonium sulfate. This relatively low level of added electrolyte is sufficient to salt out the PNAM block, while steric stabilization is conferred by the relatively short salt-tolerant PHEAC block. A mean degree of polymerization (DP) of up to 6000 was targeted for the PNAM block, and high NAM conversions (>96%) were obtained in all cases. On dilution with deionized water, the as-synthesized sterically stabilized particles undergo dissociation to afford molecularly dissolved chains, as judged by dynamic light scattering and 1H NMR spectroscopy studies. DMF GPC analysis confirmed a high chain extension efficiency for the PHEAC precursor, but relatively broad molecular weight distributions were observed for the PHEAC-PNAM diblock copolymer chains (Mw/Mn > 1.9). This has been observed for many other PISA formulations when targeting high core-forming block DPs and is tentatively attributed to chain transfer to polymer, which is well known for polyacrylamide-based polymers. In fact, relatively high dispersities are actually desirable if such copolymers are to be used as viscosity modifiers because solution viscosity correlates closely with Mw. Static light scattering studies were also conducted, with a Zimm plot indicating an absolute Mw of approximately 2.5 × 106 g mol-1 when targeting a PNAM DP of 6000. Finally, it is emphasized that targeting such high DPs leads to a sulfur content for this latter formulation of just 23 ppm, which minimizes the cost, color, and malodor associated with the organosulfur RAFT agent.