The synthesis of the first completely characterized transition-metal complex containing a sulfur-bound 4,6-dimethyldibenzothiophene (4,6-Me(2)DBT) ligand, [CpRu(CO)(2)(eta(1)(S)-4,6-Me(2)DBT)]BF(4) (1) (Cp = eta(5)-C(5)Me(5)), is reported. X-ray studies of 1 and its 4-methyldibenzothiophene and dibenzothiophene analogues, [CpRu(CO)(2)(eta(1)(S)-4-MeDBT)]BF(4) (2) and [CpRu(CO)(2)(eta(1)(S)-DBT)]BF(4) (3), show that the Ru-S bond distances increase in the order, 3 < 2 < 1. Equilibrium studies on the series of [CpRu(CO)(2)(eta(1)(S)-DBTh)](+) compounds, where DBTh = DBT, 4-MeDBT, 4,6-Me(2)DBT, and 2,8-Me(2)DBT, show that the relative binding strengths of the dibenzothiophene ligands increase in the order 4,6-Me(2)DBT (1) < 4-MeDBT (20.2(1)) < DBT (62.7(6)) < 2,8-Me(2)DBT (223(3)). These results are the first to quantify the steric effect of 4- and 6-methyl groups on the sulfur-coordinating ability of dibenzothiophenes to transition-metal centers. They are also consistent with the proposal that 4- and 6-methyl groups reduce the coordination of dibenzothiophenes to active metal sites on hydrodesulfurization catalysts, which could account for the slow rate of 4-MeDBT and 4,6-Me(2)DBT hydrodesulfurization in petroleum feedstocks.
Read full abstract