Dibenzofuran (DBF) has been considered an environmental risk due to its high toxicity and risks to human health and ecosystems. Among wastewater treatment technologies, the adsorption process has emerged as a potential solution to remove organic pollutants efficiently, including dibenzofuran, in wastewater. The study aims to investigate the feasibility of sugarcane bagasse-based biochar for DBF removal through adsorption. Biochar characteristics showed a high specific surface area of up to 498.97 m2/g and abundant functional groups on the material surface, resulting in high removal performance of DBF with average adsorption efficiency and adsorption capacity reaching maximum values of 98.43% and 96.77 mg/g, respectively. The optimum parameters were suggested for DBF removal: pyrolysis temperature of 700oC, contact time of 50 min, biochar dosage of 0.5 g/L, and DBF concentration of 40 mg/L. Furthermore, the results of adsorption kinetics and adsorption isotherms indicated that the adsorption process benefits DBF removal. Pseudo-second-order model and Langmuir model can describe the DBF removal process due to the best fit to experimental data (R2 > 0.98). Based on these findings, sugarcane bagasse-based biochar could be utilized efficiently to remove DBF from wastewater.
Read full abstract