The study continues a series of observations started in the late 1950s, aimed at inferring changes in the Lake Ladoga ecosystem state recorded in the surface-sediment diatom assemblages. At the pre-anthropogenic stage (prior to the 1960s), the composition of the surface-sediment diatom assemblages indicated an oligotrophic state of Lake Ladoga. With the increased P load to the lake (late 1960s–1980s), the transition to a mesotrophic state was recorded via increased proportions of eutrophic species and decreased abundances of the taxa typical of the pre-anthropogenic stage. In the early 1990s, the composition of the surface-sediment diatom assemblages still indicated a mesotrophic state despite a decreased external P load. At the present de-eutrophication stage of Lake Ladoga (the 2000s), the abundances of eutrophic taxa steadily decrease while some taxa typical of the pre-anthropogenic period return to their dominating position in the surface-sediment diatom assemblages. However, despite the decreased P concentrations, the Lake Ladoga ecosystem has not returned to its pre-anthropogenic state as indicated by the present-day composition of the surface-sediment diatom assemblages. This suggests a delayed ecosystem response to the decreased anthropogenic pressure, and possibly some irreversible changes resulting from the eutrophication. At present, de-eutrophication processes and ecosystem recovery are superimposed upon the recent climatic changes that govern the onset and duration of the vegetative seasons for the phytoplankton communities in Lake Ladoga. The diatom-inferred changes in the ecological state of Lake Ladoga are in agreement with the results of longterm hydrochemical and hydrobiological studies.
Read full abstract