It has been historically documented that deep, nutrient-rich, offshore slope waters that enter the Gulf of Maine through the Northeast Channel are the principal source of nutrients to the region. Silicate (Si(OH)4) and nitrate (NO3) in particular are potentially limiting nutrients for phytoplankton production. We examine here the extent to which nutrient variability in the region may be caused by internal recycling of organic material (i.e., chemical breakdown and dissolution of diatoms) versus variability in water mass sources, which can be identified by temperature and salinity properties. We present here the results from a gulf-wide survey conducted in October 2016. Nutrient samples were collected at 44 stations and compared to temperature, salinity, and beam attenuation profiles. Additionally, suspended particulate material in near-bottom waters was collected on filters at all stations and analyzed for biogenic silica. The results show that after being supplied via a slope water source, nitrate is likely to become depleted and silicate is likely to become enriched at any location in the gulf. We suspect that most of the nutrient variability is due to internal recycling, but there is evidence for an input of Scotian Shelf Water to the Jordan Basin region contributing nutrients at mid-depths and mixing with the deeper slope waters.
Read full abstract