A comprehension of the effects planting density and nitrogen (N) fertilization have on the physiological and morphological characteristics of trees is critical for optimizing the require size and characteristics of wood products. We evaluated the growth traits and the leaf and wood characteristics of three clone poplars including Populus simonii × P. nigra ‘Xiaohei’, ‘Xiaohei-14’ and ‘Bailin-3’ under five planting densities (1666, 1111, 833, 666, and 555 tree ha−1) and four N fertilization rates (0, 100, 160, and 220 g tree−1 year−1). The results show that the clone type significantly affected all observed indicators, while planting density and N fertilization treatments had a significant effect on growth traits and leaf characteristics, but not on wood characteristics. Specifically, the clone ‘Bailin-3’ exhibited the largest annual increments in tree height and diameter at breast height (DBH), leaf width, N content, and soluble protein content. A decrease in initial planting density (from 1666 to 555 tree ha−1) led to an increased annual incremental tree height and DBH, regardless of clone type and N fertilization treatment. N fertilization treatment significantly impacted the annual increment in DBH, but not that of tree height. Further, the annual increments in tree height and DBH were positively correlated with leaf width, N content, chlorophyll content, and soluble protein content, and negatively correlated with hemicellulose content. In addition, the chlorophyll and soluble protein contents were identified as the most reliable predictors of the annual increments in tree height and DBH. Our results demonstrate the clone ‘Bailin-3’ with 555 tree ha−1 under 160 g N tree−1 yr−1 showed superior growth traits and leaf characteristics. Thus, it is recommended for future poplar silviculture of larger diameter timber production at similar sites. The results contribute to understanding of the effects of planting density and fertilization on the growth traits and the leaf and wood characteristics of three poplar clones, offering valuable guidance for the sustainable development and long-term productivity of poplar plantations.
Read full abstract