Many organizations, including the US Centers for Disease Control and Prevention, have developed risk indexes to help determine community transmission levels for the ongoing COVID-19 pandemic. These risk indexes are largely based on newly reported cases and percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests, which are well-established as biased estimates of COVID-19 transmission. However, transmission risk indexes should accurately and precisely communicate community risks to decision-makers and the public. Therefore, transmission risk indexes would ideally quantify actual, and not just reported, levels of disease prevalence or incidence. Here, we develop a robust data-driven framework for determining and communicating community transmission risk levels using reported cases and test positivity. We use this framework to evaluate the previous CDC community risk level metrics that were proposed as guidelines for determining COVID-19 transmission risk at community level in the US. Using two recently developed data-driven models for COVID-19 transmission in the US to compute community-level prevalence, we show that there is substantial overlap of prevalence between the different community risk levels from the previous CDC guidelines. Using our proposed framework, we redefined the risk levels and their threshold values. We show that these threshold values would have substantially reduced the overlaps of underlying community prevalence between counties/states in different community risk levels between 3/19/2020–9/9/2021. Our study demonstrates how the previous CDC community risk level indexes could have been calibrated to infection prevalence to improve their power to accurately determine levels of COVID-19 transmission in local communities across the US. This method can be used to inform the design of future COVID-19 transmission risk indexes.
Read full abstract