Our two previous studies observed that cell division cycle 42 (CDC42) was lower and correlated with improved renal function and inflammation in diabetic nephropathy (DN) patients, and CDC42 inhibited renal tubular epithelial cell fibrosis and inflammation under high glucose condition. Sequentially, this current study aimed to investigate the effect of CDC42 on improving renal function, fibrosis, and inflammation in DN mice, and its interaction with T cell receptor (TCR) related pathways. Mice were treated by streptozotocin to construct early-stage DN model, then transfected with CDC42 overexpression adenovirus, followed by simultaneous treatment of LY294002 (PI3K/AKT inhibitor) and CI-1040 (ERK inhibitor), respectively. CDC42 reduced blood glucose, creatinine, and 24h urine protein in DN mice, but only showed a tendency to decrease blood urea nitrogen without statistical significance. Hematoxylin&eosin staining revealed that CDC42 descended the glomerular volume, basement membrane thickness, and inflammatory cell infiltration in kidney. Meanwhile, CDC42 lowered fibronectin, TGF-β1, and Collagen I expressions in kidney, but not decreased α-SMA significantly. Besides, CDC42 decreased T-helper (Th) 1 and Th17 cells in kidney, and reduced serum IFN-γ, IL-1β, IL-17A, and TNF-α but not IL-6. Regarding TCR-related pathways, CDC42 activated AKT and ERK pathways but not JNK pathway. However, the treatment of LY294002 and CI-1040 had limited effect on attenuating CDC42's functions on renal function and fibrotic markers. CDC42 improves renal functions, fibrosis, Th1/Th17 infiltration and inflammation to some degree in DN mice, these functions may be independent to AKT and ERK pathways.
Read full abstract