Many single nucleotide polymorphisms (SNPs) associated with type 2 diabetes overlap with putative endocrine pancreatic enhancers, suggesting that these SNPs modulate enhancer activity and, consequently, gene expression. We performed in vivo mosaic transgenesis assays in zebrafish to quantitatively test the enhancer activity of type 2 diabetes–associated loci. Six out of 10 tested sequences are endocrine pancreatic enhancers. The risk variant of two sequences decreased enhancer activity, while in another two incremented it. One of the latter (rs13266634) locates in an SLC30A8 exon, encoding a tryptophan-to-arginine substitution that decreases SLC30A8 function, which is the canonical explanation for type 2 diabetes risk association. However, other type 2 diabetes–associated SNPs that truncate SLC30A8 confer protection from this disease, contradicting this explanation. Here, we clarify this incongruence, showing that rs13266634 boosts the activity of an overlapping enhancer and suggesting an SLC30A8 gain of function as the cause for the increased risk for the disease. We further dissected the functionality of this enhancer, finding a single nucleotide mutation sufficient to impair its activity. Overall, this work assesses in vivo the importance of disease-associated SNPs in the activity of endocrine pancreatic enhancers, including a poorly explored case where a coding SNP modulates the activity of an enhancer.
Read full abstract