Studies using frequency-tagging in electroencephalography (EEG) have dramatically increased in the past 10 years, in a variety of domains and populations. Here we used Fast Periodic Visual Stimulation (FPVS) combined with an oddball design to explore visual word recognition. Given the paradigm's high sensitivity, it is crucial for future basic research and clinical application to prove its robustness across variations of designs, stimulus types and tasks. This paradigm uses periodicity of brain responses to measure discrimination between two experimentally defined categories of stimuli presented periodically. EEG was recorded in 22 adults who viewed words inserted every 5 stimuli (at 2 Hz) within base stimuli presented at 10 Hz. Using two discrimination levels (deviant words among nonwords or pseudowords), we assessed the impact of relative frequency of item repetition (set size or item repetition controlled for deviant versus base stimuli), and of the orthogonal task (focused or deployed spatial attention). Word-selective occipito-temporal responses were robust at the individual level (significant in 95% of participants), left-lateralized, larger for the prelexical (nonwords) than lexical (pseudowords) contrast, and stronger with a deployed spatial attention task as compared to the typically used focused task. Importantly, amplitudes were not affected by item repetition. These results help understanding the factors influencing word-selective EEG responses and support the validity of FPVS-EEG oddball paradigms, as they confirm that word-selective responses are linguistic. Second, they show its robustness against design-related factors that could induce statistical (ir)regularities in item rate. They also confirm its high individual sensitivity and demonstrate how it can be optimized, using a deployed rather than focused attention task, to measure implicit word recognition processes in typical and atypical populations.