Trehalases (TREs), serving as crucial enzymes regulating trehalose and chitin metabolism in insects, represent prime targets for pest control strategies. We investigated the impact of three thioxothiazolidin compounds (1G, 2G, and 11G) on TRE activity and summarized their effects on the growth and development of Spodoptera frugiperda (Lepidoptera, Noctuidae). The experimental larvae of S. frugiperda were injected with the three thioxothiazolidin compounds (1G, 2G, and 11G), while the control group received an equivalent volume of 2% DMSO as a control. All three compounds had a strong effect on inhibiting TRE activity, significantly prolonging the pre-pupal development stage. However, compared with the 11G-treated group, the survival rate of larvae treated with 1G and 2G was significantly reduced by 31.11% and 27.78% respectively, while the occurrence of phenotypic abnormalities related to growth and development was higher. These results manifest that only the TRE inhibitors, 1G and 2G, modulate trehalose and chitin metabolism pathways of larvae, ultimately resulting in the failure molting and reduction of survival rates. Consequently, the thioxothiazolidin compounds, 1G and 2G, hold potential as environmentally friendly insecticides.
Read full abstract