Existing evidence indicates that LINCMD1 regulates muscle differentiation-related gene expression in skeletal muscle by acting as a miRNA sponge, though its role in leiomyoma development is still unknown. This study investigated LINCMD1′s involvement in leiomyoma by analyzing paired myometrium and leiomyoma tissue samples (n = 34) from patients who had not received hormonal treatments for at least three months prior to surgery. Myometrium smooth muscle cells (MSMCs) were isolated, and gene expression of LINCMD1 and miR-135b was assessed via qRT-PCR, while luciferase assays determined the interaction between LINCMD1 and miR-135b. To examine the effects of LINCMD1 knockdown, siRNA transfection was applied to a 3D MSMC spheroid culture, followed by qRT-PCR and Western blot analyses of miR-135b, APC, β-Catenin and COL1A1 expression. The results showed that leiomyoma tissues had significantly reduced LINCMD1 mRNA levels, regardless of patient race or MED12 mutation status, while miR-135b levels were elevated compared to matched myometrium samples. Luciferase assays confirmed LINCMD1′s role as a sponge for miR-135b. LINCMD1 knockdown in MSMC spheroids increased miR-135b levels, reduced APC expression, and led to β-Catenin accumulation and higher COL1A1 expression. These findings highlight LINCMD1 as a potential therapeutic target to modulate aberrant Wnt/β-Catenin signaling in leiomyoma.