Abstract Pharyngeal pouches, which are endodermal outpockets that segment the pharyngeal arches, play a crucial role in the development of craniofacial skeletons in vertebrate embryos. Our previous study successfully identified pharyngeal pouch progenitors (PPPs) in zebrafish embryos and emphasized the significance of BMP2b signaling in their specification. However, the specific mechanism by which these progenitors originate from endodermal cells remains largely unknown. Here we found that the pharmacological activation of Wnt signaling pathway disrupts the emergence of PPPs and subsequently hinders the formation of pharyngeal pouches. Moreover, we have identified the expression of tmem88a and tmem88b (collectively known as tmem88a/b) in PPPs during the early-somite stages. Furthermore, the deficiency of tmem88a/b leads to an excessive accumulation of β-catenin in both the cytoplasm and nucleus of endodermal cells that are intended to differentiate into PPPs. Importantly, suppressing the hyperactivation of Wnt/β-catenin signaling through pharmacological treatment, the defects in PPP specification in tmem88a/b−/− mutants are successfully rescued. In summary, our findings establish a clear connection between the specification of PPPs and the regulation of Wnt signaling mediated by Tmem88. These results underscore the pivotal role of Tmem88 in the development of pharyngeal pouches.
Read full abstract