Pyroptosis can effectively overcome immunosuppression and reactivate antitumor immunity. However, pyroptosis initiation is challenging. First, the underlying biological mechanisms of pyroptosis are complex, and a variety of gasdermin family proteins can be targeted to induce pyroptosis. Second, other intracellular death pathways may also interfere with pyroptosis. The rationally designed gasdermin protein-targeting biomaterials are capable of inducing pyroptosis and have the capacity to stimulate antitumor immune function in a safe and effective manner. This review provides a comprehensive overview of the design, function, and antitumor efficacy of pyroptosis-inducing materials and the associated challenges, with a particular focus on the design options for pyroptosis-inducing biomaterials based on the activation of different gasdermin proteins. This review offers a valuable foundation for the further development of pyroptosis-inducing biomaterials for clinical applications.