The widespread use of dental implants as a predictable treatment choice has drawn attention to their complications as a major challenge despite their high clinical success rates. In this context, loosening of the abutment screw in posterior single crowns is the most common problem; the use of adequate preload and proper anti-rotational features at implant‒abutment interface appear to be two main solutions to such a problem. The present study evaluated the effect of implant‒abutment connections in four different implant systems before and after cyclic loading. Intra-Lock, Dentis, Xive, and Dio implant systems were used in this study. Each system underwent one million cycles of dynamic forces eight times with a magnitude of 110 N. For each specimen after tightening the screw with a torque of 32 Ncm, the detorque values were measured and recorded by a digital torquemeter after and before cyclic loading. Data were analyzed by Kolmogorov-Smirnov, Levene's, one-way ANOVA, and post hoc Tukey tests. Initial detorque values between the study groups showed significant differences (P<0.0001). Pairwise comparisons showed significantly lower primary detorque values in the Dentis system compared to the three other systems (P<0.0001). After cyclic loading, significant differences were observed between the study groups (P<0.0001). Pairwise comparisons of the groups showed significant differences between all the systems after loading. The type of implant‒abutment connection is an essential factor influencing the amount of abutment screw loosening.