BackgroundOpioids are effective painkillers used for medical purposes. Their prolonged ingestion can provoke some side effects (including overdose or constipation) that are minimized by using opioid antagonists (e.g., naloxone). The rapid determination of opioids and their antagonists in biosamples is essential for an effective medical treatment. The direct combination of sample preparation and mass spectrometry (MS) fits well in this scenario. It can speed up the analysis achieving a good selectivity, which relies on the sample preparation and MS, and sensitivity levels. ResultsThis article presents a novel substrate-spray mass spectrometry interface based on a polydopamine-cotton (PDA-Cel) composite hosted inside the inner diameter of a 14-gauge blunt needle to determine oxycodone and naloxone in saliva samples. The needle is used as a microextraction device and a substrate for mass spectrometric analysis. The lack of sharpness of the 14-gauge (14G) blunt needles challenges the formation of the electrospray (ESI), and a commercial 10 μL pipette tip is proposed as a simple solution to this shortcoming. Under the optimum parameters, the proposed method was validated, obtaining limits of detection lower than 0.6 μg L−1, linear range up to 200 μg L−1, and linearity better than 0.9915. Relative standard deviation (RSD) and relative recoveries (RR) were studied at three different concentration levels (2, 40, and 200 μg L−1). RSD values were better than 20.7 %, and RR ranged from 90 to 114 %. Finally, a positive sample from a patient under medical treatment was analyzed. Significance and novelty14G blunt needles have been demonstrated as effective extraction devices due to their low price (<0.15 € per extraction unit), their better safety (avoiding finger pricking), and their higher hosting capacity (up to 8 mg of sorbent). The conductivity of stainless steel permits their use as electrospray emitters, making their direct combination to MS easier. The large variety of fibrous sorbents makes this approach versatile enough to be adapted to other analytical problems.
Read full abstract