Long-chain fatty acids (LCFA) are commonly found in lipid-rich wastewaters and are a key factor to monitor the anaerobic digesters. A new simple, fast, precise, and suitable method for routine analysis of LCFA is proposed. The system involves in-syringe-magnetic stirring-assisted dispersive liquid-liquid microextraction (DLLME) prior to gas chromatography-mass spectrometry (GC-MS) without a derivatization process. Calibration curves were prepared in an ethanol solution (R2 ≥ 0.996), which was also useful as disperser solvent. Hexane was chosen as the extraction solvent. Several parameters (pH, ionic strength, extraction solvent volume, stirring time) were optimized in multivariate and univariate studies. Limits of detection (LODs) were found in the range 0.01-0.05mgL-1 and good precision inter-day (RSDs≤7.9%) and intra-day (RSDs≤4.4%) were obtained. The method was applied to quantify LCFA in supernatants of anaerobic digesters and olive mill wastewaters (OMW). Palmitic, stearic, and oleic acids were the most abundant fatty acid in the analyzed samples and the relative recoveries for all of them were between 81 and 113%.