The development of modern absorption media suitable for CO2 scrubbing, such as ionic liquids and their mixtures, requires appropriate analytical protocols. In this paper, the application of high-performance liquid chromatography to the determination of alkanolamine at various concentrations in ionic liquid solutions was investigated. Both hydrophilic and hydrophobic commercial ionic liquids, such as 1-butyl-3-methylimidazolium acetate [bmim][OAc], 1-ethyl-3-methylimidazolium octylsulfate [emim][OcSO4], and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [bmim][NTf2], were studied in this paper and different sample preparation procedures were used for each class of solvent. A simple extraction step was necessary prior to HPLC analysis for hydrophobic ionic liquids. This step was performed using five times more 0.05 M KH2PO4 than needed for the ionic liquid sample. Hydrophilic ionic liquid solutions could be analyzed after diluting the sample with water. The general procedure involved separation at room temperature using a cation-exchange HPLC with 0.05 M KH2PO4 as the mobile phase and refractometric detection without derivatizing the amines. The influence of the temperature and mobile phase composition on alkanolamine retention was investigated. The relationship between the peak area and alkanolamine concentration was linear over 3 orders of magnitude (2–200 nmol). The detection limit (LOD) for monoethanolamine (MEA) and diethanolamine (DEA) was 1.5 and 2 nmol, respectively. For hydrophobic ionic liquids, which require extraction, it was possible to analyze a 0.004% MEA solution. The quantity of the sample required for analysis was 0.1 g, and the analysis time did not exceed 20 minutes.
Read full abstract