Ship detection in low-quality Synthetic Aperture Radar (SAR) images poses a persistent challenge. Noise signals in complex environments disrupt imaging conditions, hindering SAR systems from acquiring precise target information, thereby significantly compromising the performance of detectors. Some methods mitigate interference via denoising techniques, while others introduce noise using classical methods to learn target features in the presence of noise. This conundrum is regarded as a cross-domain problem in this paper; a ship detection method in low-quality images is proposed to learn features of targets and shrink serious deterioration of detection performance by utilizing Generative Adversarial Networks (GANs). First, an image-to-image translation task is implemented using CycleGAN to generate low-quality SAR images with complex interference from the source domain to the target domain. Second, with the annotation inheritance, these generated SAR images participate in a training process to improve the detection accuracy and model robustness. Multiple experiments indicate that the proposed method conspicuously improves the detection performance and efficaciously reduces the missed detection rate in the SAR ship detection task. This cross-domain approach achieved outstanding improvements in the form of 11.0% mAP and 3.22% mAP on the GaoFen-3 ship dataset and SRSSD-V1.0, respectively. In addition, the characteristics and potentials of near-shore and off-shore SAR image reconstruction with style transfer based on Generative Adversarial Networks were explored and analyzed in this work.
Read full abstract