Antimicrobial peptides exist ubiquitously as a host defense system in a broad range of species, including insects, amphibians, and mammals. The binding of these peptides is followed by the disruption of cytoplasmic membranes, leading to bacterial cell death; however, the precise mechanism of membrane destruction has remained controversial. In this study, we have examined the mechanism of action for the antimicrobial peptide, CM15 (KWKLFKKIGAVLKVL), a chimeric peptide of cecropin and mellitin. We find that the cytotoxicity of CM15 against either E. coli or Pseudomonas aeruginosa can be mitigated by the addition of sugar or poly(ethylene glycol) osmolytes to the extracellular media. The dependence of osmoprotection on solute size suggests the formation of pores with an effective diameter of 2.2-3.8 nm. In contrast, no osmoprotection was observed for cell killing by the cationic detergent dodecyltrimethylammonium bromide. Osmolytes also protected cells against the cytotoxicity of CM15 expressed intracellularly as a C-terminal extension of the carrier protein ketosteroid isomerase (KSI). Osmoprotection against the intracellularly produced peptide was also dependent on osmolyte size, in a manner that was in agreement with that observed for extracellularly added synthetic CM15. These data indicate that the formation of discrete pores in the cytoplasmic membrane is a key factor in the mechanism of bacterial killing by CM15.