We have developed an automated sensing system for the repeated detection of a specific microRNA (miRNA) of the influenza A (H1N1) virus. In this work, magnetic particles functionalized with DNAs, target miRNAs, and alkaline phosphate (ALP) enzymes formed sandwich structures. These particles were trapped on nickel (Ni) patterns of our sensor chip by an external magnetic field. Then, additional electrical signals from electrochemical markers generated by ALP enzymes were measured using the sensor, enabling the highly sensitive detection of target miRNA. The magnetic particles used on the sensor were easily removed by applying the opposite direction of external magnetic fields, which allowed us to repeat sensing measurements. As a proof of concept, we demonstrated the detection of miRNA-1254, one of the biomarkers for the H1N1 virus, with a high sensitivity down to 1 aM in real time. Moreover, our sensor could selectively detect the target from other miRNA samples. Importantly, our sensor chip showed reliable electrical signals even after six repeated miRNA sensing measurements. Furthermore, we achieved technical advances to utilize our sensor platform as part of an automated sensing system. In this regard, our reusable sensing platform could be utilized for versatile applications in the field of miRNA detection and basic research.