As the onset of cancer recurrence is not explicitly recorded in the electronic health record (EHR), a high volume of manual chart review is required to detect the cancer recurrence. This study aims to develop an automatic rule-based algorithm for detecting ovarian cancer (OC) recurrence on the basis of minimally preprocessed EHR data. The automatic rule-based recurrence detection algorithm (Auto-Recur), using notes on image reading (positron emission tomography-computed tomography [PET-CT], CT, magnetic resonance imaging [MRI]), biomarker (CA125), and treatment information (surgery, chemotherapy, radiotherapy), was developed to detect the first OC recurrence. Auto-Recur contains three single algorithms (images, biomarkers, treatments) and hybrid algorithms (combinations of the single algorithms). The performance of Auto-Recur was assessed using sensitivity, specificity, and accuracy of the recurrence time detected. The recurrence-free survival probabilities were estimated and compared with the retrospective chart review results. The proposed Auto-Recur considerably reduced human resources and time; it saved approximately 1,340 days when scaled to 100,000 patients compared with the conventional retrospective chart review. The hybrid algorithm on the basis of a combination of image, biomarker, and treatment information was the most efficient (sensitivity: 93.4%, specificity: 97.4%) and precisely captured recurrence time (average time error: 8.5 days). The estimated 3-year recurrence-free survival probability (44%) was close to the estimates by the retrospective chart review (45%, log-rank P value = .894). Our rule-based algorithm effectively captured the first OC recurrence from large-scale EHR while closely approximating the recurrence-free survival estimates obtained by conventional retrospective chart reviews. The study findings facilitate large-scale EHR analysis, enhancing clinical research opportunities.
Read full abstract