A nonenzymatic redox-responsive sensor was put forward for the detection of methylparathion (MP) by designing globular nanostructures of molecularly imprinted polymers on graphene oxide (GO@MIPs) via surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT). Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and small-angle X-ray scattering (SAXS) studies have confirmed the successful formation of receptor layers of MIPs on RAFT agent-functionalized GO sheets. The electrochemical signal with an amplified current response was attained because of the enhanced diffusion rate of ions at the interface provided by widening the pore size of the MIP film. The analytical response of GO@MIPs, validated by recording square-wave anodic stripping voltammetry (SWASV) at varying MP concentrations, followed the linear response between 0.2 and 200 ng/mL. Under optimized conditions, the sensor exhibited a limit of detection of 4.25 ng/mL with high selectivity over other interfering ions or molecules. The anti-interfering ability and good recovery (%) in food samples directed the use of the proposed sensor toward real-time monitoring and also toward future mimicking of surfaces.
Read full abstract