Infectious myonecrosis virus (IMNV) has affected shrimp farming in many countries, such as northeastern Brazil and southeast Asia, and poses a serious threat to the global shrimp industry. Reverse transcription enzymatic recombinant amplification technology (RT-ERA) is a rapid DNA amplification assay with high specificity in isothermal conditions and has been widely applied to the pathogen’s detection. In this study, two novel ERA assays of IMNV, real-time RT-ERA and an RT-ERA combined with lateral flow dipsticks assay (RT-ERA-LFD), were developed and evaluated. The real-time RT-ERA assay could be carried out at 38–42 °C and had the highest end-point fluorescence value and the smallest Ct value at 41 °C. The brightness and width of the detection line were at a maximum at 39 °C and 30 min, and these conditions were selected in RT-ERA-LFD. Both real-time RT-ERA and RT-ERA-LFD produced positive results with IMNV standard plasmids only and showed no cross-reaction with Vibrio parahaemolyticus, which causes acute hepatopancreatic necrosis disease (VpAHPND); white spot syndrome virus (WSSV); infectious hypodermal and hematopoietic necrosis virus (IHHNV); or Ecytonucleospora hepatopenaei (EHP). Meanwhile, we compared the sensitivities of nested RT-PCR, real-time RT-PCR, real-time RT-ERA, and RT-ERA-LFD. The sensitivities of real-time RT-ERA and RT-ERA-LFD were both 101 copies/μL. The detection sensitivities of nested RT-PCR and real-time RT-PCR were 100 and 102 copies/μL, respectively. As a result, two ERA assays were determined to be specific, sensitive, and economical methods for the on-site diagnosis of IMNV infection, showing great potential for the control of IMNV infections.
Read full abstract