Background and aimsHepatocellular carcinoma (HCC), which is prevalent worldwide and has a high mortality rate, needs to be effectively diagnosed. We aimed to evaluate the significance of plasma microRNA-15a/16-1 (miR-15a/16) as a biomarker of hepatitis B virus-related HCC (HBV-HCC) using the machine learning model. This study was the first large-scale investigation of these two miRNAs in HCC plasma samples. MethodsUsing quantitative polymerase chain reaction, we measured the plasma miR-15a/16 levels in a total of 766 participants, including 74 healthy controls, 335 with chronic hepatitis B (CHB), 47 with compensated liver cirrhosis, and 310 with HBV-HCC. The diagnostic performance of miR-15a/16 was examined using a machine learning model and compared with that of alpha-fetoprotein (AFP). Lastly, to validate the diagnostic efficiency of miR-15a/16, we performed pseudotemporal sorting of the samples to simulate progression from CHB to HCC. ResultsPlasma miR-15a/16 was significantly decreased in HCC than in all control groups (P < 0.05 for all). In the training cohort, the area under the receiver operating characteristic curve (AUC), sensitivity, and average precision (AP) for the detection of HCC were higher for miR-15a (AUC = 0.80, 67.3%, AP = 0.80) and miR-16 (AUC = 0.83, 79.0%, AP = 0.83) than for AFP (AUC = 0.74, 61.7%, AP = 0.72). Combining miR-15a/16 with AFP increased the AUC to 0.86 (sensitivity 85.9%) and the AP to 0.85 and was significantly superior to the other markers in this study (P < 0.05 for all), as further demonstrated by the detection error tradeoff curves. Moreover, miR-15a/16 impressively showed potent diagnostic power in early-stage, small-tumor, and AFP-negative HCC. A validation cohort confirmed these results. Lastly, the simulated follow-up of patients further validated the diagnostic efficiency of miR-15a/16. ConclusionsWe developed and validated a plasma miR-15a/16-based machine learning model, which exhibited better diagnostic performance for the early diagnosis of HCC compared to that of AFP.
Read full abstract