Defect detection in transparent materials typically relies on specific lighting conditions. However, through our work on defect detection for aircraft glass canopies, we found that using a single lighting condition often led to missed or false detections. This limitation arises from the optical properties of transparent materials, where certain defects only become sufficiently visible under specific lighting angles. To address this issue, we developed a dual-modal illumination system that integrates both forward and backward lighting to capture defect images. Additionally, we introduced the first dual-modal dataset for defect detection in aircraft glass canopies. Furthermore, we proposed an attention-based dual-branch modal fusion network (ADMF-Net) to enhance the detection process. Experimental results show that our system and model significantly improve the detection performance, with the dual-modal approach increasing the mAP by 5.6% over the single-modal baseline, achieving a mAP of 98.4%. Our research also provides valuable insights for defect detection in other transparent materials.
Read full abstract