With the rapid development of mobile devices, electronic products, and electric vehicles, lithium batteries have shown great potential for energy storage, attributed to their long endurance and high energy density. In order to ensure the safety of lithium batteries, it is essential to monitor the state of health and state of charge/discharge. There are commonly two methods for measuring lithium batteries: destructive testing and non-destructive testing. Destructive testing is not suitable for in situ or non-destructive analysis as it can cause irreversible deformation or damage to the battery. Herein, this review focuses on three non-destructive testing methods for lithium batteries, including ultrasonic testing, computer tomography, and nuclear magnetic resonance. Ultrasonic testing is widely used in crack and fatigue damage detection. X-ray computer tomography and neutron tomography have gained increasing attention in monitoring the health status of lithium batteries. Nuclear magnetic resonance can be used to conduct in situ and ex situ detection. In this review, non-destructive testing of lithium batteries is summarized, including the current status, achievements, and perspectives of this technology.
Read full abstract