Abstract Antibody drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecule cytotoxic drugs and have the potential to provide significant efficacy as a treatment for cancer. The objective of this work was to identify potent new cytotoxic ADC payloads that can be used to target diverse tumor types. Here we report for the first time the discovery of fully synthetic tubulysin payloads which belong to a class of highly cytotoxic natural products that disrupt the cellular microtubule network leading to apoptosis of tumor cells. Our fully synthetic tubulysin payloads are comprised of: (i) a tubulysin warhead that displays pM potency, (ii) a protease cleavable amino-acid sequence and (iii) a tether bearing a reactive maleimide group. Tubulysin-based ADCs were generated via site-specific conjugation of these payloads to cysteines engineered into antibodies against cancer antigen target oncofetal protein 5T4. The resulting ADCs showed potent in vitro cell killing and in vivo efficacy in multiple solid tumor xenograft models including prostate cancer, non-small cell lung adenocarcinoma, breast cancer and gastric carcinoma. Furthermore, specific structural features of the tubulysin warhead, linker design and antibody engineering were shown to impact the overall in vitro and in vivo properties of the ADCs. Thus, these synthetic tubulysin payloads represent novel microtubule network disrupting compounds that display potent preclinical anti-tumor activity as an ADC that could be advanced to the clinic. Citation Format: Dorin Toader, Jay Harper, Chris Lloyd, Rose Marwood, David Bannister, Shenlan Mao, Cui (Tracy) Chen, Haihon (Helen) Zhong, Vahe Bedian, Fengjiang Wang, Lakshmaiah Gingipalli, Melisa Vasbinder, Pamela Thompson, Ryan Fleming, Byniam Bezabeh, Nazzareno Dimasi, Changshou Gao, Adeela Kamal. Discovery of tubulysin payloads for antibody drug conjugates with potent in vitro activity and in vivo efficacy in solid tumor models. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr B170.
Read full abstract