With the rapid development of stereoscopic display technology, how to generate high-quality virtual view images has become the key in the applications of 3D video, 3D TV and virtual reality. The traditional virtual view rendering technology maps the reference view into the virtual view by means of 3D transformation, but when the background area is occluded by the foreground object, the content of the occluded area cannot be inferred. To solve this problem, we propose a virtual view acquisition technique for complex scenes of monocular images based on a layered depth image (LDI). Firstly, the depth discontinuities of the edge of the occluded area are reasonably grouped by using the multilayer representation of the LDI, and the depth edge of the occluded area is inpainted by the edge inpainting network. Then, the generative adversarial network (GAN) is used to fill the information of color and depth in the occluded area, and the inpainting virtual view is generated. Finally, GAN is used to optimize the color and depth of the virtual view, and the high-quality virtual view is generated. The effectiveness of the proposed method is proved by experiments, and it is also applicable to complex scenes.
Read full abstract