The lensless camera with incoherent illumination has gained significant research interest for its thin and flexible structure. However, it faces challenges in resolving scenes with a wide depth of field (DoF) due to its depth-dependent point spread function (PSF). In this paper, we present a single-shot method for extending the DoF in Fresnel zone aperture (FZA) cameras at visible wavelengths through passive depth estimation. The improved ternary search method is utilized to determine the depth of targets rapidly by evaluating the sharpness of the back propagation reconstruction. Based on the depth estimation results, a set of reconstructed images focused on targets at varying depths are derived from the encoded image. After that, the DoF is extended through focus stacking. The experimental results demonstrate an 8-fold increase compared with the calibrated DoF at 130 mm depth. Moreover, our depth estimation method is five times faster than the traversal method, while maintaining the same level of accuracy. The proposed method facilitates the development of lensless imaging in practical applications such as photography, microscopy, and surveillance.
Read full abstract