Small satellites such as CubeSats pose demanding requirements on the weight, size, and multifunctionality of their structures due to extreme constraints on the payload mass and volume. To address this challenge, we introduce a concept of multifunctional deployable space structures for CubeSats based on ultrathin, elastically foldable, and self-deployable bistable composite structures integrated with flexible electronics. The multifunctional bistable booms can be stored in a coiled configuration and self-deploy into a long structure upon initiation by releasing the stored strain energy. The boom demonstrates the capabilities of delivering power and transmitting data from the CubeSat to the flexible devices on the boom tip. The boom also shows the ability to monitor the dynamics and vibration during and after the deployment. A payload boom has been installed in a 3 U CubeSat as flight hardware for in-space testing and demonstration. This effort combines morphable ultrathin composite structures with flexible electronics.
Read full abstract