Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (−)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.
Read full abstract