Hybrid organic-inorganic semiconductors with strong electron-phonon interactions provide a programmable platform for developing a variety of electronic, optoelectronic, and quantum materials by controlling these interactions. However, in current hybrid semiconductors such as halide perovskites, anharmonic vibrations with rapid dephasing hinder the ability to coherently manipulate phonons. Here, we report the observation of long-lived coherent phonons in lead organic chalcogenides (LOCs), a new family of hybrid two-dimensional semiconductors. These materials feature harmonic phonon dynamics despite distorted lattices, combining long phonon dephasing times with tunable semiconducting properties. A dephasing time -up to 75 ps at 10 K, with up to ∼500 cycles of phonon oscillation between scattering events, was observed, corresponding to a dimensionless harmonicity parameter that is more than an order of magnitude larger than that of halide perovskites. The phonon dephasing time is significantly influenced by anharmonicity and centrosymmetry, both of which can be tuned through the design of the organic ligands enabled by the direct bonding between the organic and inorganic motifs. This research opens new opportunities for the manipulation of electronic properties with coherent phonons in hybrid semiconductors.
Read full abstract