We study the effect of the angular momentum dependence of the optical potential transparency on the neutron-nucleus cross section. In this work, we derive a functional form of the neutron-nucleus cross section with respect to spherical optical potential using the collision matrix and modify it. We also apply an analytical model (Ramsauer) to the square optical potential and the optical model using the TALYS 1.96 code to get the angular momentum–independent transparency and demonstrate the effect of the angular momentum dependence via comparison of two models. In this work, we calculate the neutron cross sections for 40 ≤ A ≤ 90 nuclei, with energies 100 MeV ≤ En ≤ 200MeV theoretically, the for ℓ ≠ 0 case. We find that the angular momentum dependence of the transparency treats good calculations of the neutron-nucleus cross section; a finite number of angular momentums will contribute appreciably to the nuclear reaction. The present study on smooth optical potential leads to useful insight into the mechanisms of neutron-induced reactions, particularly for medium nuclei at high energies.
Read full abstract