BackgroundDenture fracture is a common problem with acrylic dentures. The fractured denture can be repaired using various techniques such as self-cure acrylic resin acrylic resin and fiber-reinforced acrylic resin. PurposeThe purpose of this study was to compare the accuracy of dentures repaired with self-cure acrylic resin and fiber-reinforced acrylic resin processed using two different techniques (long-cure and microwave processing). Materials and methodsA total of 20 maxillary complete dentures were processed with two techniques; heat (long cycle) processing (10 dentures) and microwave processing (10 dentures). The maxillary cast and denture surface were scanned with Medit intraoral (Medit i700, Medit, South Korea) and STL files were created. Then, the dentures were sectioned at the midline and repaired using self-cure acrylic resin and fiber-reinforced acrylic resin and scanned with Medit intraoral. Finally, adaptation deviations were analyzed from computer software (Geomagic Control X, 3D Systems Inc., USA). The adaptation deviations in each group (long cure and microwave) were compared using an Independent T-test. Two-way ANOVA was done to see whether curing techniques and repairing methods affect the accuracy of repair. A P-value of 0.05 was considered significant. ResultsThe adaptation deviation was slightly higher in the fiber-reinforced acrylic resin group (0.565 ± 0.093) than in the self-cure acrylic resin group (0.536 ± 0.066). However, there was no statistical difference in the adaptation deviations of repaired dentures with self-cure acrylic resin and fiber-reinforced acrylic resin in the long-curing (P-value 0.245) and the microwave (P-value 0.638). Similarly, the adaptation deviation was slightly higher in the long-curing group (0.577 ± 0.075) than in the microwave group (0.524 ± 0.079). However, there was a statistically significant difference in the adaptation deviation of repaired dentures between long-curing and microwave techniques with self-cure acrylic resin (P-value 0.016) but no difference in fiber-reinforced acrylic resin (P-value 0.127). The result of Two-way ANOVA shows that there is no statistically significant interaction between curing techniques (long curing and microwave) and repairing methods (self-cure acrylic resin and fiber-reinforced acrylic resin) for adaptation deviations (P-value 0.646). However, the curing techniques show statistically significant differences (P-value 0.039). ConclusionAcrylic dentures can be repaired with self-cure resin or fiber-reinforced self-cure resin using various processing methods. The accuracy of the denture after repair is unaffected by the repairing method (self-cure acrylic resin and fiber-reinforced acrylic resin) but the accuracy of the denture after repair is affected by the curing techniques (long-curing and microwave). In self-cure resin, the microwave processing showed higher adaptation deviation and less accuracy, whereas the long-curing processing showed lower adaptation deviation and high accuracy.
Read full abstract